Model of muscle-tendon interaction during frog semitendinosis fixed-end contractions.

نویسندگان

  • R L Lieber
  • C G Brown
  • C L Trestik
چکیده

A structural model was developed to explain sarcomere shortening at the expense of tendon lengthening in the frog semitendinosis (ST) muscle-tendon system. The model was based on the data of Lieber et al. [Am. J. Physiol. 261, C86-C92 (1991)], who determined the relationship between the sarcomere length, tendon load (as a fraction of maximum isometric tension) and tendon, bone-tendon junction (BTJ), and aponeurosis strain. The model was generated assuming a finite time-course of cross-bridge attachment [Huxley, Prog. Biophys. 7,255-318 (1957)], an ideal sarcomere length-tension relationship [Gordon et al., J. Physiol. 184, 170-192 (1966)] and an ideal force-velocity relationship [Katz, J. Physiol. 96, 45-64 (1939); Edman, J. Physiol. 291, 143-159 (1979)]. Functionally, sarcomeres operated on three distinct regions of the length-tension curve: (1) regions where the muscle force decreased as sarcomeres shortened (the shallow and steep ascending limbs); (2) regions where the muscle force increased as sarcomeres shortened and there was little passive tension (descending limb, where sarcomere length greater than or equal to 3.0 microns); and (3) regions where the muscle force increased as sarcomeres shortened and there was a significant passive tension (descending limb where sarcomere length greater than 3.0 microns). Using such a physiological model, it was found that the effect of tendon compliance was to 'skew' the sarcomere length-tension curve to the right and to increase the operating range of the muscle-tendon unit.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative model of intersarcomere dynamics during fixed-end contractions of single frog muscle fibers.

A numerical model of a muscle fiber as 400 sarcomeres, identical except for their initial lengths, was used to simulate fixed-end tetanic contractions of frog single fibers at sarcomere lengths above the optimum. The sarcomeres were represented by a lumped model, constructed from the passive and active sarcomere length-tension curves, the force-velocity curve, and the observed active elasticity...

متن کامل

Differential strain patterns of the human Achilles tendon determined in vivo with freehand three-dimensional ultrasound imaging.

The human Achilles tendon (AT) has often been considered to act as a single elastic structure in series with the muscles of the triceps surae. As such it has been commonly modelled as a Hookean spring of uniform stiffness. However, the free AT and the proximal AT have distinctly different structures that lend themselves to different elastic properties. This study aimed to use three-dimensional ...

متن کامل

Variation in the forearm extensor muscle: case report

Background: The Extensor Carpi Radialis Longus (ECRL) and the Extensor Carpi Radialis Brevis (ECRB) are muscles of the posterior forearm compartment. variations in this area of the forearm are common and are usually diagnosed during surgery. Sometimes these variations are symptomatic and can be helpful in clinical procedures such as surgery. Diagnosis and identification of abnormalities can be ...

متن کامل

Survey of the Effects of Exposure to 900 MHz Radiofrequency Radiation Emitted by a GSM Mobile Phone on the Pattern of Muscle Contractions in an Animal Model

Introduction: The rapid development of wireless telecommunication technologies over the past decades, has led to significant changes in the exposure of the general public to electromagnetic fields. Nowadays, people are continuously exposed to different sources of electromagnetic fields such as mobile phones, mobile base stations, cordless phones, Wi-Fi routers, and power lines. Therefore, th...

متن کامل

Additional in-series compliance reduces muscle force summation and alters the time course of force relaxation during fixed-end contractions.

There are high mechanical demands placed on skeletal muscles in movements requiring rapid acceleration of the body or its limbs. Tendons are responsible for transmitting muscle forces, but, because of their elasticity, can manipulate the mechanics of the internal contractile apparatus. Shortening of the contractile apparatus against the stretch of tendon affects force generation according to kn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 1992